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Abstract

Exotic plant invaders can promote others via direct or indirect facilitation,

known as “invasional meltdown.” Increased soil nutrients can also promote

invaders by increasing their competitive impacts, but how this might affect

meltdown is unknown. In a mesocosm experiment, we evaluated how eight

exotic plant species and eight Eurasian native species responded individually

to increasing densities of the invasive plant Conyza canadensis, while varying

the supply and fluctuations of nutrients. We found that increasing density of

C. canadensis intensified competitive suppression of natives but intensified

facilitation of other exotics. Higher and fluctuating nutrients exacerbated the

competitive effects on natives and facilitative effects on exotics. Overall, these

results show a pronounced advantage of exotics over native target species with

increased relative density of C. canadensis under high nutrient availability and

fluctuation. We integrate these results with the observation that exotic species

commonly drive increases in soil resources to suggest the Resource-driven

Invasional Meltdown and Inhibition of Natives hypothesis in which biotic

acceleration of resource availability promotes other exotic species over native

species, leading to invasional meltdown.
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INTRODUCTION

The introduction of exotic plant species and anthropo-
genic disturbances are increasing due to the global rise
in the exchange of goods and human populationsYan Sun and Zhi-Kun Ren are joint first authors.
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(Early et al., 2016; Kuebbing et al., 2013; Pyšek et al., 2020;
Seebens et al., 2021; Stotz et al., 2020). Therefore, under-
standing what may weaken or exacerbate their spread and
impact is crucial. One strikingly counterintuitive, yet
potent, biotic process that often intensifies exotic invasions
is the positive effect that many invaders have on each
other (Braga et al., 2018), dubbed “invasional meltdown”
(Simberloff & Von Holle, 1999). The main component of
invasional meltdown, that is, facilitation among exotic
plants is widely supported in the literature (Braga
et al., 2018) but is counterintuitive because competition
between exotic invaders and natives is generally quite
one-sided in favor of invaders (Callaway et al., 2011;
Hierro et al., 2022; Pearse et al., 2019; Richards
et al., 2006; Sun et al., 2017; Vilà & Weiner, 2004). In other
words, invaders are usually excellent competitors. So why
would invaders so often have positive effects on each
other? Most reports on invasional meltdown are based on
co-occurrence of exotics, which could just indicate a
co-preference for particular conditions, such as disturbed
habitats, and not facilitation (Braga et al., 2018). There is
also experimental support for invasional meltdown, but
little in the context of large groups of species or experi-
mental comparisons of exotic and native species
(Braga et al., 2018), and importantly the invasional
meltdown hypothesis is fundamentally a multispecies,
community-based hypothesis.

The mechanisms that drive invasional meltdown are
not clear but could include a broad suite of direct and
indirect facilitative mechanisms (Callaway, 2007).
Nevertheless, it is even less clear what mechanisms might
disproportionately benefit other exotic species in a melt-
down process relative to native species (but see Flory &
Bauer, 2014). One overlooked possible mechanism of
invasional meltdown is the general acceleration of pro-
ductivity and nutrient cycling associated with exotic inva-
sive plants. In a meta-analysis across many taxa of
invasive species and invaded habitat types, Liao et al.
(2008) found that plant invasions were associated with
large increases in aboveground net primary productivity.
Also, total nitrogen concentrations in plants increased by
40%, and soil ammonium and nitrate concentrations
increased by 30% and 17%, respectively, in association
with exotic species. Furthermore, carbon and nitrogen
pools in microbial biomass increased by 34% and 26%,
respectively (also see Ehrenfeld, 2003). In a more recent
meta-analysis, Xu et al. (2022) reported even larger
increases in available soil nitrogen and phosphorus.
McLeod et al. (2016) reported similar associations
between exotic invasive species, productivity, and soil
nitrogen, and also that exotics were associated with
very large increases in ammonia oxidizing bacteria in
soils. Since exotic invaders frequently benefit from

high soil nutrient concentrations (Besaw et al., 2011;
Burke & Grime, 1996; Davis et al., 2000; Huenneke
et al., 1990; Maron & Connors, 1996; Thompson
et al., 2001; Thomsen et al., 2006), and if the positive
effects of an exotic species on soil nutrients facilitates
other exotic species, this might drive invasional
meltdown.

In contrast to the potential facilitative effects of
biotically increased soil nutrients, high nutrient avail-
ability can intensify competitive interactions, which
can also potentially exacerbate invasions (Alba
et al., 2019; Besaw et al., 2011; Liu et al., 2017;
Olsen et al., 2016; Sardans et al., 2017; Wang &
Callaway, 2021; Zhang et al., 2022). This is consistent
with analyses of competitive intensity on abiotic gradi-
ents (Brooker et al., 2005; Pennings & Callaway, 1992)
but might be more pronounced in the disproportion-
ately strong competitive effects exotics have on natives
(Golivets & Wallin, 2018; Kuebbing & Nunez, 2016;
Pearse et al., 2019; Vilà & Weiner, 2004).

In addition to total resource supply, the timing of
resource delivery can affect the outcome of competition
and has been hypothesized to favor exotic invasion: the
“fluctuating resources” hypothesis (Davis et al., 2000). It
is thought that ruderal species are better at rapidly
exploiting dynamic resources than species in other func-
tional groups. However, not all invaders are ruderal
(see Huang et al., 2009; Reinhart et al., 2005), and a
single species can show highly competitive traits in exotic
ranges versus weak competitive traits in native ranges
(Callaway et al., 2011; Sun et al., 2015). Furthermore,
disturbance can have far more positive effects on inva-
sion in exotic ranges than in native ranges (Hierro
et al., 2006). Regardless, some studies support the fluctu-
ating resource hypothesis (Eskelinen & Harrison, 2014;
Goldstein & Suding, 2014) and others do not (Gebauer
et al., 2002; James et al., 2006; Slate et al., 2022).
Biotically increased and potentially fluctuating nutrient
supply may contribute to invasional meltdown and to the
suppression of native species by exotics, and all may be
accelerating as global problems.

Global nitrogen deposition is substantial (Ackerman
et al., 2019), and fluctuating resources are believed to
have a significant impact on invasibility (Davis &
Pelsor, 2001), which may become more prevalent due to
the expansion of agro-ecosystems (Demattê et al., 2020).
However, to our knowledge, no studies have explored
these processes simultaneously or their potential interac-
tions at the level of multispecies communities. Insight
into competition in the context of different facets of
resource supply can be gained from the responses of tar-
get individuals to varying relative densities of competitors
(Sun et al., 2013). For example, as the relative density of
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neighbors increases, competition would be demonstrated
by a decreasing biomass of the target, a negative slope,
whereas facilitation would be demonstrated by a positive
slope. For example, evidence for invasional meltdown
would be a positive correlation between increasing rela-
tive densities of an exotic invader and the individual
biomass of exotic neighbors (Kuebbing et al., 2013).
The effect of total resource ability or the dynamics of
resource supply can be evaluated by comparing these slopes.

We experimentally explored the interactions among
total nutrient supply, fluctuating resources, and possible
invasional meltdown caused by the invasive plant
Conyza canadensis L. (synonym Erigeron canadensis). We
conducted experiments with C. canadensis interacting
with eight exotic versus eight native plant species, all
individually, that naturally coexist with C. canadensis in
China (http://www.iplant.cn). For all pairwise interac-
tion combinations, we also varied the total nitrogen sup-
ply and its timing. We asked the following questions:
(1) How does the growth of exotic versus native species
respond to increasing competition with C. canadensis?
(2) Does total nutrient supply change the interactions?
And (3) does a fluctuating supply of nitrogen change the
interactions between C. canadensis and exotic species
versus the interactions between C. canadensis and native
species?

MATERIALS AND METHODS

Study system

Conyza canadensis is an annual plant that is native
throughout most of North America and Central America
and is now widely naturalized throughout most of the
world (Bajwa et al., 2016). In its native range,
C. canadensis is the prototype of a ruderal species
(Weaver, 2001), and thus good for tests of fluctuating
resources. In its native range, increasing abundance of
C. canadensis has no relationship with the richness
of other species in ruderal communities (Shah
et al., 2014). But it is highly competitive with crops
(Bajwa et al., 2016), and, in its exotic range, increases in
its abundance are strongly correlated with decreases in
community richness (Shah et al., 2014). In China, it was
first recorded in Yantai, Shandong Province in the 19th
century, and has since become one of the region’s most
problematic and widespread noxious invasive species
(Wu et al., 2019; Yan et al., 2020).

In disturbed habitats in parts of its exotic ranges,
C. canadensis can spread rapidly and become dominant
by displacing other species. In such habitats, other exotic
species are commonly found (van Kleunen et al., 2015),

thus, during its spread, C. canadensis is interacting with
both exotic and native species. We selected eight exotic
and eight native plant species that naturally coexist with
C. canadensis (pers. observation; Appendix S1: Table S1;
Figure 1). The seeds of all 17 species were collected in the
field in Wuhan, in at least three populations for each spe-
cies and subsequently pooled for each species.

Experimental setup

We conducted the experiment in a greenhouse at the
Wuhan Botanical Garden, Chinese Academy of Sciences,
Wuhan, China (30.51� N, 114.54� E). We sowed the seeds
of each species separately in germination trays
(16 cm × 8 cm × 4.5 cm) filled with potting soil. To
ensure that all the species were at a similar developmen-
tal stage at the beginning of the experiment, we sowed
them on various dates. After one or two weeks of growth,
we used similar-sized seedlings (two-leaves) from each
C. canadensis individual, eight exotic and eight native
species and then transplanted them into 2.5-L circular
plastic pots filled with a 1:1 mixture of sand and fine ver-
miculite to exclude most microbiota and create a low
background nutrient level before the experimental nutri-
ent application. We chose pots large enough to keep most
plant species from becoming pot bound by the end of the
experiment but small enough to allow for intensive spe-
cies interactions.

To examine different intensities of the effect of
C. canadensis on the individual performance of exotic
versus native species, we used a replacement design with
a constant total density while systematically altering
the ratios of C. canadensis to target species (n = 4;
Harper, 1977). Specifically, for each of the 16 pairwise
combinations, we grew one individual of C. canadensis
with three target individuals, two C. canadensis individ-
uals with two target individuals, and three C. canadensis
individuals with one target individual (Figure 2a). This
setup was repeated across four nutrient treatments to
investigate how nutrient supply and fluctuations affects
species interactions (Figure 2b). Although replacement
designs are frequently used in competition experiments
(e.g., Wagg et al., 2011), it should be noted that this
design inherently confounds inter- and intraspecific
interactions (Jolliffe, 2000). This is because when the
number of plants of the interspecific competitor
increases, the number of intraspecific plants automati-
cally decreases. However, as it applies equally across both
exotic and native target species and among the nutrient
treatments in our experiment, the replacement design
still allowed us to test the impact of the relative density
of C. canadensis on the comparative performance of
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exotic and native target plant species under varying nutri-
tional conditions.

Nutrient treatments began 1 week after transplanting
using a Hoagland solution fertilizer at weekly intervals
for a total of 10 weeks. We conducted four nutrient sup-
ply patterns: (1) constant low, (2) constant high, (3) high
single pulse, and (4) high multiple pulses (Figure 2b).
The low-nutrient treatment (1) received a total of 100 mL
of a 400%-strength Hoagland solution. Treatments (2) to
(4) were all high-nutrient treatments that received
400 mL of a 400%-strength Hoagland solution throughout
the experiment but differed in the temporal pattern of
nutrient supply (Figure 2b). To avoid water-supply bias
among treatments, we added extra water to each pot so
that the total solution volume was always 250 mL. We
watered the plants with the same amount every 3 days.
There were six replicates per target species for each of the
relative abundance and nutrient treatment combinations,
resulting in 1152 pots. After transplanting, plants were
exposed to natural light conditions supplemented by
metal halide bulbs, following a 14/10 h day/night cycle at
a 22/28�C temperature cycle in the greenhouse. During

the experiment, we randomly arranged pots on tables
and switched tables weekly. One week after completing
the last nutrient application, we harvested the above-
ground biomass of the target plants. Importantly, because
there were different numbers of target individuals in the
competition treatments (1, 2, or 3), we used the mean
individual biomass of the targets for analyses. Because
the roots in the pots were intertwined, we could not har-
vest the roots of the target species separately from
C. canadensis. The aboveground biomass was then dried
at 80�C for 72 h before being weighed.

Statistical analysis

To investigate the effects of the relative abundance of
C. canadensis, target species origins (exotic vs. native),
and their interactions, on the aboveground biomass of
target species under four different nutrient treatments,
we performed a linear mixed model (LMM) with relative
abundance of C. canadensis, origin of target plants, nutri-
ent treatments, and their interactions as fixed factors,

F I GURE 1 Pictures illustrating the coexistence of Conyza canadensis in the wild with our target exotic plant species, Bidens pilosa (a),

and our target native plant species, Pterocypsela indica (b). Photo credits: Zhi-Kun Ren.
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and with target species as random factor. When there
was a significant interactive effect, multiple comparisons
were carried out using least square mean post hoc tests
(LSM), and p-values were adjusted by false discovery rate
(FDR; Benjamini & Hochberg, 1995). All statistical ana-
lyses were performed with R (version 4.0.5) using the
“car” (Fox & Weisberg, 2018), “lme4” (Bates et al., 2014),
“lsmeans” (Lenth, 2016), and “multcomp” (Hothorn
et al., 2008) packages.

RESULTS

Across all treatments, the mean individual aboveground
biomass of native target plants was reduced by the
density of C. canadensis, that is, its increasing relative
abundance (χ2 = 91.3, p < 0.001), indicating overall

competitive effects of the invader (Figure 3). In contrast,
other exotic species experienced facilitation with the
increasing abundance of C. canadensis. The effect of tar-
get species origin was substantial (χ2 = 9.9, p < 0.001)
with exotic target plants having higher mean individual
aboveground biomass than natives (χ2 = 8.49, p = 0.004).
Thus, the interaction of target species origin
×C. canadensis relative abundance was highly significant
(χ2 = 752.1, p < 0.001), with differences between exotic
and native target plants becoming larger with increasing
C. canadensis density. Initially, at low density of
C. canadensis, the individual aboveground biomass
of exotic and native target plants was comparable, how-
ever, as C. canadensis density increased, the exotic target
species obtained a clear biomass advantage over the
natives (Table 1). In the constant low nutrient treatment
(Figure 3a), the relative abundance of C. canadensis was

F I GURE 2 Graphical illustration of the experimental design for the potential effect of resource availability on the interactions between

the relative abundance of a focal plant invader and exotic as compared with native target species. We designed a two-species interaction

study that compared eight exotic versus eight native plant species grown with three relative abundances of the focal invasive alien species

(IAS) Conyza canadensis (a) and under four different nutrient regimes (b). Each bar represents the amount of nutrient solution supplied

each week during the 10 weeks of the experiment. The total amount of nutrients added in the constant low-nutrient treatment was 100 mL

and in all high-nutrient treatments 400 mL; the latter was further divided into constant, single pulse, and multiple pulse nutrient additions.

Photo credits: Zhi-Kun Ren. exp., experiment.

ECOLOGY 5 of 13

 19399170, 2024, 9, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4387 by B

ibliotheque C
antonale E

t U
niversitaire, W

iley O
nline L

ibrary on [06/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F I GURE 3 Key results of the effect of resource availability on the interactions between the relative abundance of a focal plant invader

and exotic as compared with native target species, shown for the four nutrient treatments (a–d). Orange and blue points represent individual

biomass of target exotic and native plant species in each pot, respectively. The varied shade orange and blue colors indicate the eight target

exotic and native plant species, respectively. Differences between treatments are indicated by ns (not significant); †p ≤ 0.1; *p ≤ 0.05;

**p ≤ 0.01; ***p ≤ 0.001.
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weakly positively related to the mean individual biomass
of exotic target species (R2 = 0.01, p = 0.088), whereas this
relationship for native target species was significantly neg-
ative (R2 = 0.06, p = 0.005). The slopes of these regres-
sions, however, were not different (p = 0.529; Figure 3a)
indicating that the origin of target species did not change
the effect of increasing C. canadensis density at low, con-
stant nutrient application. For all high nutrient treatments
(constant high, high single pulse, and high multiple
pulses), relationships between the relative abundance of
C. Canadensis and the biomass of the target native species
were negative (R2 ≥ 0.06, p ≤ 0.002), but positive for target
exotic species (R2 ≥ 0.23, p < 0.001; Figure 3b–d). The rel-
ative slopes marginally differed between exotic versus
native target species (p = 0.054) in the constant high
nutrient treatment (Figure 3b). However, under fluctuat-
ing nutrient conditions, this difference became highly sig-
nificant (p < 0.001; Figure 3c,d), with nutrient-fluctuating
treatments enhanced most positive correlations between
the relative abundance of C. canadensis and the mean
individual biomass of exotic target species (p = 0.001),
and this effect was more pronounced with nutrient pulses
(p < 0.001). In contrast, nutrient fluctuation generally
increased the negative correlations between C. canadensis
density and the mean individual biomass of native spe-
cies (p = 0.045 for all, but not between high single ver-
sus high multiple pulses; Figure 3c,d). Overall, our
results illustrated a pronounced advantage of exotics
over native target species under high nutrient availabil-
ity and fluctuation.

DISCUSSION

Our most striking result was that pulsed nutrient supply
increased the competitive effect of invasive C. canadensis
on native species but increased the facilitative effect of
the invasive C. canadensis on other exotic species, mark-
ing a clear shift in the competitive and facilitative effects,
favoring exotics over natives with increasing relative
abundance of C. canadensis. These competitive effects
are consistent with a large body of literature showing
that exotic plant invaders commonly have dispropor-
tionately strong negative effects on natives (Callaway
et al., 2011; Hierro et al., 2022; Vilà & Weiner, 2004),
and these facilitative effects are a good example
of the main component of invasional meltdown
(Simberloff & Von Holle, 1999). The other component,
a synergistic effect of multiple invasives was not part of
our study.

Interactions of C. canadensis with exotic
and native target plant species

Ideally, we would have also assessed the growth of the
exotic and native target species in isolation and used mul-
tiple co-occurring focal invaders. Even so, our results
clearly show that with increasing C. canadensis abun-
dance, the relative biomass advantage of the exotics
over the natives increased. The striking difference
between competitive inhibition of natives and facilita-
tion of other exotics is unusual in the literature, and
presently we can only speculate about the mechanisms
for this.

The negative relationship between the relative abun-
dance of C. canadensis and aboveground biomass of the
native target plants follows the predicted relationship
outlined in Introduction. This indicates that resource
competition may be an important driver of the interac-
tion between C. canadensis and natives, and if so
C. canadensis may have a higher capability of exploiting
resources than the native species (Sun et al., 2013).
Zhang and van Kleunen (2019), found that common
exotics had higher growth rates (grew larger) and experi-
enced stronger intraspecific competition than natives.
Thus, reducing intraspecific competition by replacing
conspecific neighbors with C. canadensis, the remaining
exotic individual might benefit from reduced intraspecific
competition. For small natives, on the other hand,
replacement of conspecifics with a taller exotic could
increase competitive suppression. We found that the
exotics were larger, overall, than the natives, thus Zhang
and van Kleunen (2019) might provide an explanation.
Our results correspond, in part, with correlational studies

TAB L E 1 Results of linear mixed-effect models that examined

the effects of the density of the focal invader Conyza canadensis

(1:3, 2:2, and 3:1), the origin of the target species (exotic vs. native),

the different nutrient treatments (constant low, constant high, high

single pulse, and high multiple pulses) and their interactions on the

growth of the different target species.

Biomass of target species

Variables df χ2 p

Fixed effect

Origin 1 9.793 0.002

Density 2 89.899 <0.001

Nutrient 3 1068.761 <0.001

Origin × Density 2 770.331 <0.001

Origin × Nutrient 3 266.672 <0.001

Density × Nutrient 6 98.870 <0.001

Density × Origin × Nutrient 6 305.985 <0.001

Random effects

Species <0.001

Note: Significant fixed effects (p < 0.05) are highlighted in bold font.
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in the field and experimentally controlled interactions
between C. canadensis and other species (Shah et al., 2014).
Furthermore, if our experimentally increased nutrient
status mimics the increase in soil nutrients associated
with exotic invasions (Ehrenfeld, 2003; Liao et al., 2008;
Xu et al., 2022), this could be consistent with
nutrient-facilitated meltdown involving groups of exotic
species, and nutrient-facilitated competitive suppression of
natives (Besaw et al., 2011; Maron & Connors, 1996;
Thompson et al., 2001; Thomsen et al., 2006).

There is also good evidence that C. canadensis is alle-
lopathic (Djurdjevi�c et al., 2011) and exotic invaders often
have stronger allelopathic effects on species native to the
invader’s new range than species from the invader’s
native range (Becerra et al., 2018; Callaway &
Aschehoug, 2000; Qin et al., 2013; Zhang et al., 2021).
Such a biogeographical pattern of allelopathy is not
known for C. canadensis, but in controlled experiments
Shah et al. (2014) found that other North American
species suppressed C. canadensis (competitive response)
much more than species from Europe, China, or
Kashmir. However, counterintuitively, C. canadensis had
stronger competitive effects on North American species
than species from other ranges in two of three experi-
ments (Shah et al., 2014).

A possible explanation for the increase in mean bio-
mass of exotic species (note they were grown and analyzed
as single species and as random factor in the experiments),
is increased intraspecific, or density-dependent, competi-
tion among C. canadensis individuals, which could
weaken interspecific competitive effects of C. canadensis
on targets. Moreover, the concomitant lower density of
the exotic species resulted in less self-limitation through
intraspecific competition. The idea that intraspecific
competition exceeds interspecific competition is a major
component of coexistence theory (Chesson, 2000) and a
common outcome of field observational studies and
experiments (Adler et al., 2018). However, to substan-
tially confound our results, this idea would need to
apply exclusively to the exotic target species and not to
the native target species. This might be because exotic
species are phenotypically more plastic, which might
allow them to take up more resources as nutrient supply
increases (Davidson et al., 2011; Hiatt & Flory, 2020;
Matesanz & Sultan, 2013). Indeed, phenotypic plasticity
has frequently been proposed to explain invasion suc-
cess (Gioria et al., 2023; Richards et al., 2006; Wang &
Althoff, 2019).

Other studies indicate that invasional meltdown
might be mediated, in part, by soil microbes (Chen &
van Kleunen, 2022; Zhang et al., 2020). However, we
used sand and vermiculite, which are initially nearly
sterile, as the growth substrate, and therefore the

effect of soil microbiota in our study should be limited.
The root exudates of other species can have positive
effects (Bi et al., 2022; Hierro & Callaway, 2021),
but it is not clear if these effects are direct or mediated
through soil biota. The bottom line is that the facilita-
tive effects of increasing relative abundance of
C. canadensis on exotics is unusual and without clear
mechanisms.

High nutrient supply and dynamics

In our experimental setup, fluctuating resources had very
strong effects on both the intensity of competition and of
facilitation, and have been proposed to promote invasion,
or the recruitment of new species in a community in gen-
eral (Davis et al., 2000). For example, greenhouse and
mesocosm studies have found that exotic invasive species
can outcompete natives when resource pulses are applied
(Parepa et al., 2013; Tao et al., 2021). In contrast, a number
of field experiments have not found pulses to affect inter-
actions (Gebauer et al., 2002: James et al., 2006; Slate
et al., 2022; but see Pearson et al., 2018; Slate et al., 2021).

In contrast to the mixed literature on the importance
of pulsed resources to exotic invasion, the evidence for
high resource supply more consistently favoring invaders
is strong (Besaw et al., 2011; Liu et al., 2018; Mangla
et al., 2011; Maron & Connors, 1996; Slate et al., 2022;
Yu & He, 2021). Resource addition decreases the number
of limiting resources and thereby promotes dominance of
one of the species (Harpole & Tilman, 2007; Zhang
et al., 2022). Furthermore, high resource supply can
increase overall competitive intensity (but not necessarily
importance; Brooker et al., 2005), and since invaders are
often strong competitors, they perhaps benefit dispropor-
tionately from conditions that promote the general inten-
sity of interactions. Invaders may gain advantages in both
high resource and pulsed resource environments due to
high plasticity (Richards et al., 2006), but evidence for
this varies substantially (Davidson et al., 2011;
Palacio-L�opez & Gianoli, 2011; Thompson et al., 1995;
Wang & Callaway, 2022). Invasive species may benefit,
relative to natives, by generally being more on the “fast
side” of the plant economics spectrum, and interestingly
common garden experiments indicate that invasive
plants may be evolving even faster capabilities in their
exotic ranges (Montesinos, 2022).

It is important to note that replacement series designs
inherently confound variation in intraspecific competi-
tion with competition between the two target species
(Jolliffe, 2000). However, to increase the overall impact of
C. canadensis, increasing the number of individuals
was necessary, while the only way to hold total density
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constant was to reduce the number of the target species.
Despite the inherent constraints of replacement series, the
confounding effect of increasing numbers of C. canadensis
was the same in both native and non-native treatments,
and in the different nutrient treatments, and thus is highly
unlikely to explain the differences between exotic and
native target species. Furthermore, while variation in
intraspecific interactions might ameliorate competitive
effects among other species, this alone is highly unlikely
to actually facilitate other species. Additionally, our most
fundamental finding can be seen in just the high-density
C. canadensis treatment, thus bypassing the most signifi-
cant issues with replacement design experiments. Finally,
we tested eight exotic and eight native species, and the
patterns were consistent, thus unlikely that changing
intraspecific competition among C. canadensis would
affect all exotics versus all natives differently, which indi-
cate a clear advantage for exotic over native target species
as C. canadensis relative density increases, reinforcing the
concept of invasional meltdown rather than simple com-
petitive dynamics. One should still further explore these
interactions, particularly focusing on distinguishing
between direct facilitative effects and the reduction of
intraspecific competition, to more accurately characterize
the mechanisms underlying the competitive advantage of
exotics over natives.

We found that the effects of increased resource
availability and resource fluctuations appeared to inter-
act in ways that created larger differences in exotic
versus native responses to C. canadensis (Figure 3).
Different competitive effects of exotics on native
and exotic plants have important consequences for
the spread of exotic invasive species, perhaps in
agro-ecosystems in particular. Owing to fertilizer appli-
cations, agricultural land is nutrient rich, making it
susceptible to invasions by exotic invaders. At the edges
of agriculture, resources might fluctuate due to fertil-
izer spillover of nutrients. Our findings suggest that
these circumstances would favor the accumulation of
exotics species and thus might explain the fact that
exotic plant species often aggregate with other exotic
species, especially in species-poor, high-biomass com-
munities in their exotic range, relative to patterns in
native ranges (Stotz et al., 2020).

Resource-driven Invasional Meltdown and
Inhibition of Natives

We propose a general hypothesis in which the effects of
many exotic species on resources may feedback to
stimulate the growth of the first exotic species and

F I GURE 4 The Resource-driven Invasional Meltdown and Inhibition of Natives (RIMIN) hypothesis: Invader-driven increase in soil

resources will feedback to promote the growth of the exotic invasive alien species (IAS) and enhance the facilitation effect on other exotic

invader species, while it intensifies the competitive effect on native species This will eventually drive invasional meltdown and lead to the

exclusion of natives (from thinner blue line to thicker blue line). The table highlights the RIMIN hypothesis (in bold) together with

alternative mechanisms discussed in the text. Illustrations were made by Y. Sun.
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promote other exotics, driving invasional meltdown.
Concomitantly, invader-driven increases in soil resources
should exacerbate the inhibition of natives by exotics.
Based on such feedbacks between exotic invaders, soil
resources, and native species, we propose the
Resource-driven Invasional Meltdown and Inhibition of
Native (RIMIN) hypothesis (Figure 4). This is the idea
that when exotic invaders increase soil resources, they
promote the growth of themselves and other exotics, and,
conversely, this intensifies their competitive effects on
native species. In conclusion, the biogeographic origin, or
provenance, of species appears to have powerful effects
on interactions regardless of nutrient supply or dynamics
(e.g., Pearse et al., 2019), but these interactions between
exotic and native plants can be highly altered by resource
availability. We acknowledge that the underlying mecha-
nisms of RIMIN remain speculative, and we look forward
to studies shedding light on this.
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